
Runa WFE 2.1
Developer's Guide

Legal Notice
This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; version 2.1 of the License. This program is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details. You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA.

Table of Contents
Legal Notice.. 2
Overview of system architecture... 4

Architecture Levels... 4
Core technologies..4
Main packages...4
Workflow Process Engine...4

Extending RunaWFE... 5
Action Handlers.. 5
Task Handlers (bots)... 5
Organization Functions... 6
Variable Tags.. 7
Variable Format.. 7
Business Calendar... 8
Decision Handler...8

Overview of system architecture

Architecture Levels
Runa WFE contains 5 levels.
This levels are: DAO, Logic, Service, Delegate, Application.

1. DAO level does all persistent operations. (it could be substituted via Factory
mechanism). You can substitute DAO implementation with EJB3/Hibernate3/JDO2
Oracle Toplink or even plain JDBC.

2. Logic level does all business logic operations (it can't be substituted).
3. Service level provides means to access Logic. Runa WFE has Session Beans

implementation of service level, WEB services and plain method invocation (for
performance issue) implementations are in plans.

4. Delegate level provides API for all Application level classes (it hides complexity of
service invocation from developer). Each delegate implementation calls corresponding
Service.

5. Application level consists of web components (vartags), bots,action and task handlers,
script api and other useful stuff.

Core technologies
• Hibernate 2.1 – ORM (DAO Level)
• JAAS – authentication (logic)
• JBoss jBPM – workflow engine (logic)
• EJB 2.0 stateless session beans – for remoting and transaction demarcation

(service/delegate level)
• JSP 2.0, Servlet 2.3, Struts 1.2 – for web client UI (application level)

Main packages
You will find two packages ru.runa.af and ru.runa.wf:

af – stands for authorization framework.
wf – stands for workflow.

Workflow Process Engine
Runa WFE uses JBoss JBPM as the workflow engine.
jbpm specific files names are ru.runa.wf.logic.jbpm*.

Extending RunaWFE
Runa WFE supports customization in a number of different ways:

• Action Handlers
• Task Handlers
• Organization Functions
• VarTags
• Variable Formats
• Business Calendars
• Decisions

Let's discuss these “extension points” one by one.

Action Handlers
Actions are triggered on different events from jbpm engine. For example, an action can be
triggered on state-enter or state-leave event. Actions are configured in GDP. When jbpm triggers
an action the specified action handler is called.

Action handler is a class that implements a simple interface
public interface ActionHandler {
 void execute (ExecutionContext executionContext);
}
ExecutionContext contains the process variables, links to process definition and process
instance etc. It is also used to create new variables, and set their values.

Action handlers are useful for simple operations (for example to send sms-notification if the
business process has reached some important state). But they also have several limitations. First
of all, action handlers do not operate in a associated security context. This means they can not
execute any secured methods (start processes, complete tasks, create users etc). They may not
block business process execution (for example with Thread::Sleep(...) method). For
example, if an action handler tries to send an e-mail, but the SMTP-server is not reachable, the
action handler is not allowed to “delay” its execution.

Task Handlers (bots)
Bot is an abbreviation of “robot”. In Runa WFE bots are a special case of actors. The system
does not distinguish bots from humans. Each bot has its credentials to login to the system, it
periodically wakes up, checks its task list and performs found tasks.

Each bots tasks is processes with a corresponding task handler. Runa WFE provides several task
handlers out of the box:
• CancelProcessTaskHandler
• CancelThisProcessInstanceTaskHandler
• DatabaseTaskHandler
• DoNothingTaskHandler
• EmailTaskHandler
• MSWorkReportTaskHandler
• NotWorkingTaskHandler
• SleepingTaskHandler

Implementing new task handler is as simple as implementing
ru.runa.wf.logic.bot.TaskHandler interface:
public interface TaskHandler {

public void configure(String configurationName)
throws TaskHandlerException;

public void handle(Subject subject, TaskStub taskStub)
throws TaskHandlerException;

}
Once a task handler has finished its task it calls
ExecutionServiceDelegate->completeTask(...) method to mark the task as completed and
resume the business process.

Please note, that task handlers are executed in a security context of the bot-user and may perform
any operation (if allowed by the security configuration).

Task handlers can efficiently block the execution of the business process. The only thing a task
handler has to do is not to call completeTask until it is sure it has finished the task.

For example, an e-mail sending task handler is allowed to “block” the execution of the business
process this way until it is sure, that the SMTP-server has accepted the message for delivery.

Task handlers are invoked periodically when the bot checks its task list.

Organization Functions
Organization Function in Runa WFE is a function object, that operates over an enterprise
organizational hierarchy domain. A function that searches a database for a boss of a given
employer is a simple example of an organization function.

Organization Functions are used in Runa WFE primarily to initialize business process
swimlanes. They are also used in a substitution engine.

Runa WFE currently can not provide a complete set of organization functions because of the
great variety of relations between employers in different organizations. This way Runa WFE
provides a number of “built-in” functions:
• ru.runa.af.organizationfunction.ChiefFunction
• ru.runa.af.organizationfunction.ChiefRecursiveFunction
• ru.runa.af.organizationfunction.DemoChiefFunction
• ru.runa.af.organizationfunction.ExecutorByNameFunction
• ru.runa.af.organizationfunction.GroupFunction
• ru.runa.af.organizationfunction.SQLFunction
• ru.runa.af.organizationfunction.SubordinateFunction
• ru.runa.af.organizationfunction.SubordinateRecursiveFunction

and a possibility to write your own functions.

Organization Function is not treated in a pure mathematical sense. This way it can have side
effects, return different values given the same arguments and it is not suitable for memoizing
(caching of the returned values). The latter drives us to the requirement that in heavily loaded
installations all used organization functions should have efficient implementation.

Let's discuss how to create a new organization function.

In order to create a new organizational function you need to implement a

ru.runa.af.organizationfunction.OrganizationFunction interface:
package ru.runa.af.organizationfunction;
public interface OrganizationFunction {

public long[] getExecutorIds (Object[] parameters)
throws OrganizationFunctionException;

}
Once you've implemented a function you need place the compiled class under the jboss
CLASSPATH. After that, you may deploy and run business processes that depend on this
function.

Let's discuss the signature of the getExecutorIds function. It requires an array of objects as an
input. This array is created from the list of actual arguments specified during business process
development in GPD.

The function must return a non-null array of executor ids or throw an
OrganizationFunctionException.

Variable Tags
Classes that implement ru.runa.wf.web.html.VarTag interface are used to develop business
process task forms. They are used to render business process variables values in HTML.
package ru.runa.wf.web.html;
import javax.security.auth.Subject;
import javax.servlet.jsp.PageContext;
import ru.runa.af.AuthenticationException;
public interface VarTag {

public String getHtml (
Subject subject
, String varName
, Object varValue
, PageContext pageContext)
throws WorkflowFormProcessingException

, AuthenticationException;
}
Derived classes must implement getHtml method to return valid HTML code.
Runa WFE provides a number of built-in variable tags that are located in
ru.runa.wf.web.html.vartag package.

It is possible of course to develop custom tags. All you have to do is to implement VarTag
interface and put the compiled code under jboss CLASSPATH as usually.

Variable Format
Variable formats are used to declare typed variables in jpdl. Technically variable formats are
subclasses of java.text.Format (there is a move currently to make formats subclasses of a
custom type ru.runa.Format) and implement methods to serialize/deserialize variables of
supported types into/from string representation.

There are two methods that should be implemented:
Object parseObject(String source, ParsePosition pos)
StringBuffer format(Object obj, StringBuffer toAppendTo, FieldPosition pos)

Please, see java.text.Format documentation for details.

Business Calendar
Business Calendar is a concept needed to implement scheduler, deadlines and other features, that
need to distinguish business time and real time.

Business Calendar takes care about business hours, holidays, coffee breaks etc. Runa WFE
provides a default implementation of Business Calendar that is adopted from jboss jbpm3.

In case if the default implementation is not suitable one can implement its own Business
Calendar by subclassing org.jbpm.calendar.BusinessCalendar interface.
package org.jbpm.calendar;
import java.util.Date;
public interface BusinessCalendar {

Date add(Date date, String duration);
Date findStartOfNextDay(Date date);
boolean isHoliday(Date date);
boolean isInBusinessHours(Date date);

}
It is also required to set jbpm.business.calendar property to point to your new
implementation.

Decision Handler
Decision handlers are used in a “Decision” jpdl-element to select a single execution path among
several possible. A decision handler is an implementation of
package org.jbpm.delegation;
public interface DecisionHandler {
 String decide (ExecutionContext executionContext);
}
Currently Runa WFE provides a single working decision handler
ru.runa.wf.jbpm.delegation.decision.BSFDecisionHandler that is based on BSF scripts.

Its is easy to notice that decision handler accepts ExecutionContext. Actually a decision
handler has to make a decision based on the business process variables values. Like action
handlers decision handlers can not use secured method, they can not handle their errors and
postpone the decision until good times.

A decision handler must return the name of the transition to accept.

	Legal Notice
	Overview of system architecture
	Architecture Levels
	Core technologies
	Main packages
	Workflow Process Engine

	Extending RunaWFE
	Action Handlers
	Task Handlers (bots)
	Organization Functions
	Variable Tags
	Variable Format
	Business Calendar
	Decision Handler

