
WF-system. Business Processes Structure.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; version 2.1 of the License. This program is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details. You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Table of Contents
Introduction..2
Runa WFE business process description language restrictions...2

Process archive structure...2
Description of processdefinition.xml ...3

Swimlanes..3
Swimlane substitution..3

Description of forms.xml ...4
Description of *.form files..4

Examples of process archives development..5
HelloWorld process...5
OverTime process...6

Short description:...6
Process designing...7
Process archive development...8

Runa WFE. Deployment..11

Introduction
The workflow language for Runa WFE is jPdl. jPdl language is workflow language of

JBOSS JBPM. This document describes how to use jPdl in Runa WFE. Also this document
provides a few working examples of business processes, which show how to develop business
processes for Runa WFE.

Runa WFE business process description language
restrictions

Reference documentation for jPdl language can be found at
http://www.jboss.com/products/jbpm/docs/jPdl.

Present document provides details of using jPdl with Runa WFE.

Process archive structure

Runa WFE business process is defined using process archive. This archive is jar archive
(usually with .par extension) containing set of XML documents, form files and Java class files.
Optionally the .par file may contain image of business process graph (graph.gif) and detailed
process description (description).

The file-archive structure:
• processdefinition.xml
• forms.xml
• graph.gif
• description
• Folder: forms

• *.form
• Folder: сlasses

• *.class

processdefinition.xml file located in the root of process archive contain process graph and
swimlane definitions.

forms.xml file in the root of archive defines process variables and list of process forms.
Optional graph.gif file is graphical representation of process graph displayed in properties

of deployed process definition.
Optional description file contains detailed process description in html format, displayed in

list of deployed process definitions.
All form files defined in forms.xml must be present in process archive. It is highly

recommended to put all form files into “forms” directory in the root of archive.
If business process contains auxiliary Java classes they must be packaged in “classes”

directory in the root of archive. These classes will be loaded by system core during process
deployment.

http://www.jboss.com/products/jbpm/docs/jpdl

Description of processdefinition.xml

Swimlanes
Runa WFE uses swimlane initializes to determine executors who will execute a process

activity. Every activity has swimlane associated with it. Swimlane determines who can execute
this activity. This decision is made by mean of swimlane assignment handler. Assignment
handler is Java class that returns id of user who can execute activity.

If user queries for list of available activities (via tasklist) the mechanism called
orgfunction is used to decide whether user can execute specific task or not. Orgfunction is a Java
class that implements logic of organization function. This class generates list of executors that
can execute activity. If user is in this list, activity is shown as available in tasklist. Orgfunction
class must implement ru.runa.af.organizationfunction.OrganizationFunction interface.

After competition of activity corresponding swimlane is initialized. Swimlane
initialization is initialization of special process variable (with same name as name of swimlane)
with user id.

Runa WFE uses the following algorithm determine whether activity can be completed by
user or not:

• If the swimlane is not initialized, the activity is displayed in tasklists for all users from
orgfunction output. When the first user executes the activity, swimlane is initialized for
this user id.

• If the swimlane is initialized with user id, the activity is displayed in tasklist for this user
only.
There is another way to initialize swimlane. User id can be assigned to process variable

with name of swimlane. In this case orgfunction is not needed and swimlane is initialized after
variable setting.

To define swimlane it is required to define following elements:
• Swimlane assignment handler, which returns user id who can execute activity. Runa

WFE provides implementation of assignment handler
(ru.runa.wf.jbpm.delegation.assignment.AssignmentHandler) returning user id for
initialized swimlanes and empty string for not initialized swimlanes.

• Orgfunction, which returns list of user ids who can execute activity. Orgfunction must be
defined using jPdl assignment delegation configuration with following format:
<Initializer Java class>(<parameter>, <parameter>, …)

Runa WFE distribution contains following demo implementations of orgfunction that can
be used as reference:

• ru.runa.af.organizationfunction.ExecutorByNameFunction. Parameter is name of
executor. The initializator returns user or group of users.

• ru.runa.af.organizationfunction.DemoChiefFunction. Parameter is user id. The
initializator returns the chief of this user (demo specific class)
Parameters can be either string constants or process variable value. Variable values must

be enclosed in special braces -- ${} (e.g. ${variable name}). In this case during execution
orgfunction class receives corresponding variable value.

Swimlane substitution
In addition to orgfunction swimlane assignment there is a mechanism to complete tasks as
another user. This mechanism is called substitution and user that performs another user task is
called substitute . Substitution allows to define which users can execute task as substitute. To
define substitution it is required to define two additional elements (in addition to assignment

handler and orgfunction) in the swimlane initializer:
• Substitution criteria – specifies if swimlane substitution is required.
• Substitution function – an orgfunction which returns list of substitute ids if substitution is

required.
Substitution criteria is Java class implementing
ru.runa.af.organizationfunction.SubstitutionCriteria interface. Substitution criteria accepts the set
of parameters similar to orgfunction parameters.
Substitution function is a regular orgfunction i.e. Java class implementing
ru.runa.af.organizationfunction.OrganizationFunction interface.
In addition to regular set of parameters (text constants and variable values) both substitution
criteria and substitution function accept special parameter which is denoted with '?' symbol. This
parameter represents substituted user and calculated at runtime for each swimlane. This
parameter can be passed to substitution criteria or substitution function if substituted user is
required for criteria or function implementation.

In swimlane initializer orgfunction, substitution criteria, substitution function must be defined in
following order: <orgfunction>[;<substitution function>:<substitution criteria>]. Substitution
criteria and substitution function can be omitted if no substitution required for swimlane.

Runa WFE distribution contains demo implementation of substitution criteria that can be
used as reference:

• ru.runa.af.organizationfunction.AlwaysTrueSubstitutionCriteria, has no parameters and
always require substitution for any assigned user.

Description of forms.xml

JBOSS JBPM 2.0 does not define the forms.xml structure. Runa WFE requires
forms.xml. The forms.xml consists of single tag <forms>. This tag contains a set of <form>-tags.
Every <form>-tag corresponds to activity with a graphical form, or to activity in which variables
are initialized.

Tag <form> has three mandatory attributes:
• state – activity name
• file – name of the file, which contains the form.
• type – form type (the only supported type for now is “html”)

If variable is assigned in the activity, the activity must contain variable tag with the
following attributes:

• name – variable name (mandatory)
• format – the name of parsing class (optional, default format use variable value as is)
• optional – the variable optionality (by default variable is mandatory)

The complete version of XML Schema for forms.xml can be found in the resource
directory of Runa WFE distribution.

Description of *.form files
Every .form file contains the activity form description. The reference form parsing

mechanism uses HTML with additional tags <customtag>. These tags are used to display process
variable value in the form.

The < customtag> tag have the following attributes:
• var – process variable name
• delegation – name of Java class, responsible for the variable value rendering (must

implements ru.runa.wf.web.html.VarTag interface)

Examples of process archives development.
HelloWorld process.
The process scenario:

• At start HelloWorld form appears.
• When the button “complete” is pressed the process ends.

This process has two nodes:
• Start-state
• Stop-state

The content of processdefinition.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE process-definition PUBLIC "-//jBpm/jBpm Mapping DTD 2.0//EN" "http://jbpm.org/dtd/
processdefinition-2.0.dtd">
<!-- process-definition tag beginning -->
<process-definition name="Hello World">
 <!-- Swimlane definition -->
 <swimlane name="requester" />

 <!-- Process start point -->
 <start-state name="Hello World state" swimlane="requester">
 <!-- Transition to the next state -->
 <transition to="done"/>
 </start-state>
 <!-- The state, where process ends -->
 <end-state name="done" />

<!-- process-definition tag end -->
</process-definition>

The content of forms.xml file:

<?xml version="1.0"?>
<forms xmlns="http://runa.ru/xml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://runa.ru/xml forms.xsd">

 <!-- This tag links state with form file -->
 <form state="Hello World state" file="forms/HelloWorld.form" type="html">
 <!-- No variables are initialized -->
 </form>
</forms>

The graph.gif file may contain the following picture:

The HelloWorld.form file content:

Hello World!

The structure of HelloWorld.par is:

File HelloWorld.par
• processdefinition.xml
• forms.xml
• graph.gif
• Folder forms

• HelloWorld.form

Now process archive HelloWorld.par can be deployed into Runa WFE.
Process executing will produce the following task:

OverTime process.

Short description:
Manager offers an over time work to employee. Employee accepts or rejects the offer. Then
manager receives the corresponding notification.

All managers are members of group “manager” and all employees are members of group “staff”.

Process designing

Step 1. Process graph designing

Step 2. Variables setting up.

Establish the following variables for the OverTime process:

Variable Description Type Activity, where
initialization take place

staff Employee’s ID ID Offer an overtime work
since Date-time since… Date-time Offer an overtime work
till Date-time till… Date-time Offer an overtime work
reason OverTime reason String Offer an overtime work
comment comment Text Offer an overtime work
staff person decision employee decision Boolean Make a decision
staff person comment employee comment Text Make a decision

Step 3. Task executors setting up
Establish following swimlanes:

• staff person - employee
• manager – manager (chief of “staff person”)

Swimlanes initialization:

Swimlane Who initialize swimlane
manager Person, who starts process. (It is supposed, that the only members of

group “manager” have rights to start this process.)
staff Members of group “staff”.

Swimlane – activity mapping:
Activity Swimlane
Offer an overtime work Manager
Make a decision Staff
Notify for declining Manager
Notify for acceptance Manager

Step 4. Graphical forms designing.

Swimlane – forms mapping:

Activity Form containing file
Offer an overtime work OfferAnOvertimeWork.form
Make a decision MakeaDecision.form
Notify for declining NotifyForDeclining.form
Notify for acceptance NotifyForAcceptance.form

The type of every HTML element in a form is determined by the type of process variable in all
cases except variable staff. The staff variable corresponds to choice, containing all members of
staff group names.

Process archive development

File processdefinition.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE process-definition PUBLIC
 "-//jBpm/jBpm Mapping DTD 2.0//EN"
 "http://jbpm.org/dtd/processdefinition-2.0.dtd">

<process-definition name="over time work demo">
 <description> Over time work </description>
 <!-- Swimlanes definitions -->
 <! -- swimlane “manager” definition, (initialization takes place in the start point) -->
 <swimlane name="manager" />

 <! -- swimlane “staff” definition, (initialization takes place in the start point) -->
 <swimlane name="staff"/>

 <!-- Start point -->
 <!-- Swimlane manager is initialized by user starting the process -->
 <!-- Swimlane staff is initialized with the help of graphical form -->
 <start-state name="Offer an overtime work" swimlane="manager">
 <transition to="Make a decision"/>
 </start-state>

 <!-- Nodes -->

 <!-- Activity -->
 <state name="Make a decision">
 <description>Here employee accept or decline over time offer </description>
 <!-- Associated with activity swimlane is staff -->
 <assignment swimlane="staff" assignment="required" />
 <transition to="Is the offering accepted"/>
 </state>

 <!-- Exclusive choice -->
 <decision name="Is the offering accepted">
 <!-- The delegation mechanism is used. The transition is chosed with the
 help of
BeanShell script -->
 <delegation class="ru.runa.wf.jbpm.delegation.decision.BSFDecisionHandler">

<![CDATA[
if(Boolean.valueOf(staffPersonDecision).booleanValue())

return "accept";
else

return "decline";
]]>

 </delegation>
<transition name="accept" to="Notify for acceptance"/>
<transition name="decline" to="Notify for declining"/>

 </decision>

 <!-- Activity -->
 <state name="Notify for acceptance">
 <description>the task is – to get acquainted with acceptance of
over time work</description>
 <assignment swimlane="manager" assignment="required" />
 <transition to="done" />
 </state>

 <state name="Notify for declining">
<description>the task is – to get acquainted with rejection of
over time work</description>
<assignment swimlane="manager" assignment="required" />
 <transition to="done" />
 </state>

 <!-- The end point of the process -->
 <end-state name="done" />

</process-definition>

File forms.xml

<?xml version="1.0"?>
<forms xmlns="http://runa.ru/xml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://runa.ru/xml forms.xsd">

 <!-- Here activity is linked with form, initialized in this activity variables are established,
the classes for variables parsing is setting up -->
 <form state="Offer an overtime work" file="forms/OfferAnOvertimeWork.form"
type="html">
 <variable name="staff" />
 <variable name="since" format="ru.runa.wf.web.forms.format.DateTimeFormat" />
 <variable name="till" format="ru.runa.wf.web.forms.format.DateTimeFormat" />
 <variable name="reason" />
 <variable name="comment" />
 </form>

 <!-- Here activity is linked with form, initialized in this activity variables are established,
 the classes for
variables parsing is setting up -->
 <form state="Make a decision" file="forms/MakeaDecision.form" type="html" >
 <variable name="staffPersonDecision"
 format="ru.runa.wf.web.forms.form

at.BooleanFormat"/>
<variable name="staff person comment" />

 </form>

 <!-- Here activity is linked with form. Variables in this form are not assigning -->
 <form state="Notify for declining" file="forms/NotifyForDeclining.form" type="html" >
 </form>

 <!-- Here activity is linked with form. Variables in this form are not assigning -->
 <form state="Notify for acceptance" file="forms/NotifyForAcceptance.form" type="html" >
 </form>

</forms>

File graph.gif

graph.gif is the picture from the section “Step 1. Process graph designing”

Files *.form

File OfferAnOvertimeWork.form:

<table cellspacing="0">
 <tr>
 <td valign="top">

 <table cellspacing="0" bgcolor="#eeeeee" style="border-style:solid;
 border-width:1px;border-
color:black;">

<tr>
 <th colspan="2">
 <h3>Offer an overtime work</h3>
 <hr>
 </td>
 </tr>

<tr title="staff">
 <td align="right">
 Employee:
 </td>
 <td>

 <!-- Special tag, it corresponds to choice, containing the list of group which name is defined
with the help of “var=…” construction . The tag returns ID of chosen group member. Tag uses
delegation mechanizm -->

<customtag var="staff" delegation =
"ru.runa.wf.web.html.vartag.GroupMembersComboboxVarTag" />

 </td>
</tr>
<tr title="since">

 <td align="right">
 DateTime since (dd.mm.yyyy hh:mm):
 </td>
 <td>
 <!--Special tag for working with dates-->
 <customtag var="since" delegation="ru.runa.wf.web.html.vartag.DateTimeInputVarTag" />
 </td>
 </tr>

<tr title="till">
 <td align="right">
 DateTime till (dd.mm.yyyy hh:mm):
 </td>
 <td>
 <customtag var="till" delegation="ru.runa.wf.web.html.vartag.DateTimeInputVarTag" />
 </td>
 </tr>

 <tr title="reason">
 <td align="right">
 Reason :
 </td>
 <td>
 <INPUT TYPE="text" NAME="reason">
 </td>

 </tr>

 <tr title="comment">
 <td align="right">
 Comment :
 </td>
 <td>
 <textarea name="comment"> </textarea>
 </td>
 </tr>
</table>

Content of files
• MakeaDecision.form
• NotifyForAcceptance.form
• NotifyForDeclining.form

is similar to the content of OfferAnOvertimeWork.form

Process archive structure

File overTimeDemo.par
• processdefinition.xml
• forms.xml
• graph.gif
• Folder forms

• OfferAnOvertimeWork.form
• MakeaDecision.form
• NotifyForAcceptance.form
• NotifyForDeclining.form

After archiving it is possible to deploy process into Runa WFE.

You can find two more complex processes in the Runa WFE distributive:
• VacationDemo.par – vacation
• BusinessTripDemo – business trip

Runa WFE. Deployment.

Go to process menu.
Press deploy process definition1.
Press browse button to select appropriate process definition archive.
Press Ok button.
After deployment process appears in the process list.

1Note:In order to deploy a process you must have Process Definition permission on System (can
be granted via system menu).

	Introduction
	Runa WFE business process description language restrictions
	Process archive structure
	Description of processdefinition.xml
	Swimlanes
	Swimlane substitution

	Description of forms.xml
	Description of *.form files

	Examples of process archives development.
	HelloWorld process.
	OverTime process.
	Short description:
	Process designing
	Process archive development

	Runa WFE. Deployment.

